A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
نویسنده
چکیده
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system’s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to three-dimensional ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system’s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed. * This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
منابع مشابه
Parametric three-way receiver operating characteristic surface analysis using mathematica.
Three-way receiver operating characteristic (ROC) surface analysis involves the calculation of a volume under an ROC surface (VUS), which is a measure of discriminatory accuracy of 2 diagnostic tests for 3 diseases. Nonparametric methods for calculating VUS and its standard error have been developed. The author presents the code for roc3D, a Mathematica computer program for performing parametri...
متن کاملNonparametric and Semiparametric Estimation of the Three Way Receiver Operating Characteristic Surface
In many situations the diagnostic decision is not limited to a binary choice. Binary statistical tools such as receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) need to be expanded to address three-category classification problem. Previous authors have suggest various ways to model the extension of AUC but not the ROC surface. Only simple parametric approaches are...
متن کاملApplication of adjusted-receiver operating characteristic curve analysis in combination of biomarkers for early detection of gestational diabetes mellitus
Introduction: In medical diagnostic field, evaluation of diagnostic accuracy of biomarkers or tests has always been a matter of concern. In some situations, one biomarker alone may not be sufficiently sensitive and specific for prediction of a disease. However, combining multiple biomarkers may lead to better diagnostic. The aim of this study was to assess the performance of combination of bio...
متن کاملReceiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation
This review provides the basic principle and rational for ROC analysis of rating and continuous diagnostic test results versus a gold standard. Derived indexes of accuracy, in particular area under the curve (AUC) has a meaningful interpretation for disease classification from healthy subjects. The methods of estimate of AUC and its testing in single diagnostic test and also comparative studies...
متن کاملNon parametric ROC summary statistics
Receiver operating characteristic (ROC) curves are useful statistical tools for medical diagnostic testing. It has been proved its capability to assess diagnostic marker’s ability to distinguish between healthy and diseased subjects and to compare different diagnostic markers. In this paper we introduce non parametric ROC summary statistics to assess a ROC curve across the entire range of FPFs ...
متن کامل